ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop Clusters

نویسندگان

  • Shekhar Gupta
  • Christian Fritz
  • Bob Price
  • Roger Hoover
  • Johan de Kleer
  • Cees Witteveen
چکیده

Hadoop is the de-facto standard for big data analytics applications. Presently available schedulers for Hadoop clusters assign tasks to nodes without regard to the capability of the nodes. We propose ThroughputScheduler, which reduces the overall job completion time on a clusters of heterogeneous nodes by actively scheduling tasks on nodes based on optimally matching job requirements to node capabilities. Node capabilities are learned by running probe jobs on the cluster. ThroughputScheduler uses a Bayesian, active learning scheme to learn the resource requirements of jobs on-the-fly. An empirical evaluation on a set of sample problems demonstrates that ThroughputScheduler can reduce total job completion time by almost 20% compared to the Hadoop FairScheduler and 40% compared to FIFOScheduler. ThroughputScheduler also reduces average mapping time by 33% compared to either of these

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Task Assignment Policy and Performance Diagnosis Strategy for Heterogeneous Hadoop Cluster

The goal of the proposed research is to improve the performance of Hadoop-based software running on a heterogeneous cluster. My approach lies in the intersection of machine learning, scheduling and diagnosis. We mainly focus on heterogeneous Hadoop clusters and try to improve the performance by implementing a more efficient scheduler for this class of cluster.

متن کامل

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

Parallel Rule Mining with Dynamic Data Distribution under Heterogeneous Cluster Environment

Big data mining methods supports knowledge discovery on high scalable, high volume and high velocity data elements. The cloud computing environment provides computational and storage resources for the big data mining process. Hadoop is a widely used parallel and distributed computing platform for big data analysis and manages the homogeneous and heterogeneous computing models. The MapReduce fra...

متن کامل

Diagnosing Heterogeneous Hadoop Clusters

We present a data-driven approach for diagnosing performance issues in heterogeneous Hadoop clusters. Hadoop is a popular and extremely successful framework for horizontally scalable distributed computing over large data sets based on the MapReduce framework. In its current implementation, Hadoop assumes a homogeneous cluster of compute nodes. This assumption manifests in Hadoop’s scheduling al...

متن کامل

Hadoop Block Placement Policy for Different File Formats

Now a day’s Peta-Bytes of data becomes the norm in industries. Handling, analyzing such big data is challenging task. Even frameworks like Hadoop (Open Source Implementation of MapReduce Paradigm) and NoSQL databases like Cassandra, HBase can be used to analyze and store such large data; heterogeneity of data is still an issue. Data centers usually have clusters formed using heterogeneous nodes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013